Jump to content

Thai students take gold at 59th Mathematical Olympiad


Recommended Posts

Posted

Thai students take gold at 59th Mathematical Olympiad

 

PNSOC610716001000701.jpg

 

BANGKOK, 16th July 2018 (NNT) – Thai students have taken gold at the 59th International Mathematical Olympiad (IMO), which took place in Romania. 

The Institute for the Promotion of Teaching Science and Technology (IPST) warmly welcomed back Thai students who represented the Kingdom at the 59th IMO in Romania after they landed at Suvarnabhumi Airport yesterday. 

The Ministry of Education assembled and sponsored the Thai team that competed in the international event, which this year brought together 107 nations. The Thai team was able to win three gold medals and three silver medals, ranking fifth in the world by the end of the competition. 

The team comprised Papon Lapet of Mahidol Wittayanusorn School, who won gold, Yolrada Yongpisanpop of Triam Udom Suksa School, who won gold, Siwakorn Fuangkawinsombut of Triam Udom Suksa School, who won gold, Jirayus Jinapong of Kamnoetvidya Science Academy, who won silver, Chatchanun Suriya-amaranont of Triam Udom Suksa School, who won silver and Thana Somsiriwattana of Suankularb Wittayalai School, who won silver. 

Yolrada was also top ranked out of the competitions’ 60 female mathematics' olympians.

 
nnt_logo.jpg
-- nnt 2018-07-16
  • Like 1
Posted
4 hours ago, Deli said:

Can one publish the exams, please ? Really would like to check how ignorant I am.

 

 

fair use example

 

Problem 1. Let Γ be the circumcircle of acute-angled triangle ABC. Points D and E lie on segments AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD and CE intersect the minor arcs AB and AC of Γ at points F and G, respectively. Prove that the lines DE and FG are parallel (or are the same line).

Problem 2. Find all integers n 3 for which there exist real numbers a1, a2, . . . , an+2, such that an+1 = a1 and an+2 = a2, and

aiai+1 + 1 = ai+2

for i = 1,2,...,n.

Problem 3. An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following array is an anti-Pascal triangle with four rows which contains every integer from 1 to 10.

4
26 571
8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to 1+2+···+2018?

  • Like 1
  • Thanks 1
Posted
57 minutes ago, jenny2017 said:

From Romania: 

 

 

 

document-2018-07-11-22561616-0-2018-eng_001.png

document-2018-07-11-22561616-0-2018-eng_002.png

I thought the grossly critical comment above said they have "over 2 days" to solve the problems? I clearly see  4 hrs 30 mins on the paper or am I missing something here?

  • Like 1
  • Thanks 1
Posted
20 minutes ago, CARBO said:

I thought the grossly critical comment above said they have "over 2 days" to solve the problems? I clearly see  4 hrs 30 mins on the paper or am I missing something here?

Nope, you're not missing something, somebody must have been very wrong here. These are the original test papers and there are quite a few very bright students in Thailand. 

  • Thanks 2
Posted

That's really informative. 

My son is in training for that. There is an added bonus in training for these competitions. 

My son recieved a full scholarship to an EP programme in a top school. So we have saved quite a lot of money. 

He is M1, but we will continue to train and hope for an m4 scholarship. All of the children that win at the imo, are entitled to a full scholarship in there chosen subject and university, paid for by the government. Saving sometimes millions of baht. 

So anyone that had a grade 4 to M3 child in thailand, get started today. 

Well done thailand. 

  • Thanks 1
Posted

"Thai students have taken gold at the 59th International Mathematical Olympiad..."

These are the most brilliant students in Thailand. However, a nation's education system needs to be judged upon how the average student performs. In my experience, I have come across many students with Master's degrees who are unable to figure out simple fractions needed to make change. I am not talking about using a calculator to make change. I am talking about the process of knowing what numbers to punch into the calculator in order to get the answer. This lack of deductive logic carries over into decision making whereby a person is unable to reason in order to solve everyday problems.  

  • Thanks 1
Posted
14 hours ago, jaltsc said:

"Thai students have taken gold at the 59th International Mathematical Olympiad..."

These are the most brilliant students in Thailand. However, a nation's education system needs to be judged upon how the average student performs. In my experience, I have come across many students with Master's degrees who are unable to figure out simple fractions needed to make change. I am not talking about using a calculator to make change. I am talking about the process of knowing what numbers to punch into the calculator in order to get the answer. This lack of deductive logic carries over into decision making whereby a person is unable to reason in order to solve everyday problems.  

Couldn't you just congratulate them. ?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.



×
×
  • Create New...